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Behaviour genetic research has shown that a given gene or gene pathway can influence categorically
similar behaviours in different species. Questions about the conservation of gene function in behaviour
are increasingly tractable. This is owing to the surge of DNA and ’omics data, bioinformatic tools, as
well as advances in technologies for behavioural phenotyping. Here, we discuss how gene function, as a
hierarchical biological phenomenon, can be used to examine behavioural homology across species.
The question can be addressed independently using different levels of investigation including the
DNA sequence, the gene’s position in a genetic pathway, spatial–temporal tissue expression and
neural circuitry. Selected examples from the literature are used to illustrate this point. We will also dis-
cuss how qualitative and quantitative comparisons of the behavioural phenotype, its function and the
importance of environmental and social context should be used in cross-species comparisons. We
conclude that (i) there are homologous behaviours, (ii) they are hard to define and (iii) neurogenetics
and genomics investigations should help in this endeavour.
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1. INTRODUCTION
It is well known that gene sequences are conserved
even between distantly related species. For example,
genes in the nematode Caenorhabditis elegans or the
fly Drosophila melanogaster exhibit sequence similarity
to versions of human genes. But does such DNA
sequence similarity reflect a functionally conserved
role for the genes in question? The answer is yes for
developmental genes such as hox genes that specify
anterior–posterior morphology in organisms from
flies to mammals suggesting that hox genes had this
function in a common ancestor of arthropods and
chordates [1]. Here, we ask if evolutionary develop-
mental (evo-devo) approaches can be extended to
behavioural phenotypes that exhibit extensive plasticity
and are subject to real-time interaction with the
environment.
2. HOMOLOGY AND THE CONSERVATION OF
BEHAVIOURAL TRAITS
A phenotype is homologous when two (or more)
species share a common ancestor that exhibits the
phenotype. Distinguishing between evolutionary con-
servation and convergence is challenging [2,3].
Descriptions of homology have traditionally been the
purview of embryologists, anatomists and systematists.
More recently, evo-devo biologists have addressed
morphological homology and the role that gene func-
tion plays in specifying conserved phenotypes across
species. Molecular phylogenies have been used as
important baseline data for tests of homology and
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morphology [4]. Identifying homologous behavioural
phenotypes is challenging because (i) behaviour exhi-
bits plasticity in response to the environment and
(ii) behaviour can show homology at one level of bio-
logical organization (e.g. gene pathway), but not at
another (e.g. neural circuitry; see below) [5].

Homologous behaviours are hard to define. In devel-
opmental biology, researchers consider the modular
nature of an organisms’ body plan (e.g. a limb or an
organ) in order to relate morphological features to
phenomena at the cellular level to patterns of gene
expression [6]. Similar to this is the concept of endophe-
notypes, where complex behaviours are constructed
from simpler components or modules [7–9]. Endophe-
notypes and their behavioural components are useful for
approaching investigations of homology in behaviour.
For example, ‘courtship behaviour’ in D. melanogaster
comprises component behaviours, including orien-
tation, tapping, wing extension and song [10].
Examining behavioural components is not only impor-
tant for tractability and interspecific comparisons of
behaviours but can also help identify species-specific
modifications in complex behavioural phenotypes that
might not have been apparent.

How can behavioural phenotypes be compared
in species with drastically different morphology and
natural history? We can start with similar categories
of behaviour that are shared across species such as
feeding, mating, parental care, aggression, learning,
memory, circadian rhythms and sleep. Each category
can be quantified using descriptions of the behaviours
performed (e.g. for aggression: kick, lunge, punch,
bite) as well as information about the frequency, dur-
ation and sequencing of behaviours. A significant
challenge is to develop and standardize informative
and unbiased assays of behaviour across species using
a comparative approach [11]. Part of this challenge is
This journal is q 2011 The Royal Society
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Figure 1. Schematic diagram of the hierarchical nature of gene function in behaviour. Included are a number of factors that can
be examined for homology in influencing behaviour through gene function. Terms coloured in red indicate factors that are
intrinsic to the organism that are involved in gene function in behaviour while those that are coloured blue are extrinsic to
the organism. Epistasis and epigenetic processes are not shown in the figure; however, gene interaction networks and heritable

changes in chromosome methylation and histone modification patterns that underlie behaviours also might be conserved
across species.
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to design paradigms that are relevant to the natural
histories of each species but at the same time can be
compared functionally across species [12]. This is
more straightforward for some categories of behaviour
than others (e.g. characteristics of rest/wake cycles
compared with courtship behaviour). Considerations
of the social context of behaviours should be incorpor-
ated into analyses as this information is inseparable
from the phenotypes. Finally, the extent of plasticity of
the behaviour is also important as it tells us whether and
how much the phenotype varies across environments.
These latter considerations introduce considerable
analytical difficulties when comparing divergent species.
3. CONSERVATION OF GENE FUNCTION IN
BEHAVIOUR
Information from neurogenetics and genomics helps
determine which behaviours are homologous. Investi-
gations of gene function homology in behaviour can
be approached through interspecific comparisons of
the various components that affect the behavioural
phenotype in question [5,13,14]. The implicated
genes, their sequence variation and the relevant signal-
ling pathways and tissues (cells, organs, circuits) are all
informative (see case studies below). In this sense, we
define ‘gene function in behaviour’ as a hierarchical
phenomenon that includes not only sequence identity
and transcriptional events but also the position and
role of the gene product in a signalling pathway that
acts in defined cells and circuits in the expression of
Phil. Trans. R. Soc. B (2011)
the behavioural phenotype (figure 1). Evo-devo studies
have found that homologous morphological pheno-
types may result from genetic and developmental
mechanisms that are not themselves necessarily hom-
ologous [3,5]. This suggests that questions related to
gene function homology should focus on a single hier-
archical level of gene function (as it relates to
behaviour) at a time. This is discussed further below.

We mentioned above the need for comparable and
unbiased behavioural tests and well-known phylogenies
for the species in question (see [12] for further dis-
cussion). Examples of other pertinent investigations
include (i) genome or gene sequencing to test for
sequence homology, (ii) transcriptional studies to assess
gene expression, (iii) functional studies examining post-
translational and signalling pathways, (iv) comparative
histological studies examining developmental and phys-
iological aspects of the tissues and structures involved in
gene function and execution of the behaviour in question,
and (v) comparative studies examining gene–environ-
ment interactions of the gene(s) and behaviour(s) under
investigation. This list is not exhaustive but provides sev-
eral perspectives from which a gene’s function in
behaviour may be investigated. We suggest that the ques-
tion of homology needs to be addressed and considered at
each relevant level of gene function (cell, circuit, neural
substrate, transcription, translation, signalling pathway,
behaviour) independently (see case studies below).

Conservation of a gene’s function can occur at
the levels of molecular pathways, plasticity or gene–
environment interactions, neural circuitry, developmental
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functions and through its pleiotropy (figure 1). What is
meant here by conservation of a gene’s pleiotropic func-
tion is when a gene affects the same suite of behaviours
in two different species, suggesting shared pleiotropic
functions of the gene in these species. Some scientists
interested in genes and behaviour use the candidate
gene approach to facilitate the identification of genes
involved in the behaviours of a variety of species [15]. In
this respect, candidate genes are those that are defined
in one organism (often in well-defined genetic models
like D. melanogaster and Mus musculus) and then investi-
gated for similar effects in organisms without a genetic
tool-box. Mutations in the genes of the former group
of organisms are available or can be generated along
with transgenic animals that can be used to increase or
decrease expression of a gene and to target the expression
of that gene in time and space. Numerous behaviours
are studied in this way including courtship and mating,
circadian rhythms, sleep, learning and memory, aggres-
sion, maternal behaviour and food-related behaviours
[16,17]. The importance of olfaction, audition, taste,
touch and other stimuli to these behaviours is also
under investigation. In some cases, the neural substrates
important to these behaviours have been identified and
manipulated. Many genes that influence these behaviours
have been discovered using analyses of genetic mutants.
Natural genetic variants in behaviours have also been
studiedandgenes that affectnormal individualdifferences
in behaviour have been uncovered (e.g. foraging in Droso-
phila [18]; npr1 in C. elegans [19,20]; vasopressin receptor
in mice and voles [21]).

An important challenge to identifying homology of
gene function in behaviour is that well-resolved phyloge-
nies are lacking for many species,making it difficult to test
alternative hypotheses [12]. Below, we examine several
well-known and extensively studied examples of gene
function that influence behaviour across species. It is dif-
ficult to decipher what definition of ‘homology’ remains
once a system-based approach to gene function in behav-
iour is adopted. The case studies presented below show
that there is no singular approach to assess homology,
because examinations at different levels of the system
can lead to different conclusions. This is not an exhaus-
tive review of all pertinent examples but a selection of
useful studies for illustrative purposes.
4. CASE STUDIES IN THE CONSERVATION OF
GENE FUNCTION IN BEHAVIOUR
(a) Gene-by-environment interactions and the

serotonin transporter gene

Behaviour as a phenotype is highly responsive to the
environment. This plasticity makes it particularly challen-
ging for studies of homology. Despite the plasticity that
emerges from the abiotic and biotic factors experienced
by organisms during development and adulthood, it is
still possible to find common patterns in their responses
to environments. One way to investigate this is to use gen-
etic variation to ask whether different genotypes differ in
their sensitivity to the environment. One of the best
examples of gene-by-environment interactions that
apply across species involves allelic variation in the seroto-
nin transporter gene (5-HTT) and its interaction with
early experience [22]. 5-HTT encodes for a protein
Phil. Trans. R. Soc. B (2011)
involved in serotonin re-uptake. Studies of this gene in
non-human primates and in human populations have
identified a promoter-linked polymorphic region that
interacts with early experience to affect behaviours in
the young and adults [23]. The long and short alleles
result from a 43 bp insertion/deletion in the promoter
region of the 5-HTT gene. In humans, the short allele
has approximately three times less in vitro basal transcrip-
tion of 5-HTT mRNA when compared with the long
allele [24]. The allelic variants are differently associated
with depression and other related behaviours when an
individual has a history of adversity early in life [22]. In
general, the short allele is thought to confer risk to early
adversity while the long allele confers protection (but
this is not always the case [25]). Although rats do not
have the long–short polymorphism in their 5-HTT pro-
moter region, polymorphisms in the rat 5-HTT gene
have also been found to interact with early experience to
affect similar behaviours to those reported in rhesus
monkeys and humans [26].
(b) Gene pathways and the biological clock

Genetic analyses of the functions of biological clocks
help us to understand the conservation of molecular
pathways in behaviour. The molecular pathways
involved in circadian phenotypes, such as sleep/wake
cycles, have been well-described in diverse organisms.
Additionally, as mentioned previously, the behavioural
outputs of the clock (e.g. activity, sleep/wake cycles)
are relatively easily compared between divergent species
(figure 2). First, we provide some background on the
biological clock in Drosophila, where the genetic under-
pinnings of the clock were first discovered [28,29].

The period (per) gene, which affects circadian rhythm
in D. melanogaster, has been used as a candidate gene to
examine per homologues involved in other insects [28]
and mammals [30]; per was the first gene discovered
to affect circadian behaviour [31]. Three mutations
called long (perl), short (pers) and arrhythmic (per0)
alter eclosion rhythms and circadian patterns of loco-
motor activity. A second clock gene called timeless
(tim) affects circadian rhythmicity and per expression
[32–34]. Genes per and tim are transcriptionally regu-
lated in a cyclic manner. Transcripts of both genes are
present early in the day but the highest levels are
found late in the day and at the beginning of the night
[35–37]. PER and TIM proteins accumulate during
the night and form a heterodimer that moves into the
nucleus to bind to transcription factors Clock (CLK)
and Cycle (CYC). This prevents CLK and CYC bind-
ing to the per and tim promoters which results in the
transcriptional repression of per and tim. In early morn-
ing hours, TIM and PER degrade and allow for the rise
in tim and per transcripts. This negative effect of PER
and TIM on their own transcription creates the negative
feedback loop that has been the central theme of clocks
in many species [38]. Natural variants in per and tim are
also known [39] and provide fertile ground for explor-
ing gene function homology in behaviour. In fact,
detailed comparisons among a number of different
insect orders have already commenced [40]. There is
general agreement that the function of per in biological
rhythms is conserved across a broad range of species

http://rstb.royalsocietypublishing.org/
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Figure 2. Actograms of behavioural rhythms in (a) humans and (b) rodents. Activity is measured as an episode of sleep (dark
line) in the human and wheel running (dark line) in the rodent. Episodes of behaviour are shown relative to midnight with dark

lines. Consecutive days are plotted top to bottom for each organism. The upper panels show behaviour rhythms of individuals
maintained on light : dark cycles. The middle panels show a human with a sleep disorder called advanced sleep phase syn-
drome (ASPS) and a hamster with a mutation in the double-time gene which affects the biological clock. In the bottom
panel the individuals are kept in constant darkness without any exposure to temporal cues. In both cases, the human with
the sleep disorder and the mouse with a mutation in the period gene Per2 show drift (from the normal 24 h period) in their

rhythms. This drift is indicative of shortened periods. This figure illustrates the similarities in the circadian phenotypes of
humans and rodents (figure adapted from [27]).
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from insects to humans; however, tim’s role in the bio-
logical clock is not. Gene and genome duplication
events have produced four paralogues of per genes in
mammals known as mPer1 to mPer4 [41]. The mPer1
and mPer2 genes appear to have a functionally similar
role in the signalling pathways of flies and mammals.
Circadian genes are thought to function in a number
of human disorders [42].

Figure 3 shows the molecular pathways involved in
clock function in the fly and the mouse. What appears
to be conserved is the structure of the clock molecular
mechanism but not necessarily each particular gene or
gene product. (See also a discussion of relationship of
the cyanobacterial clock to eukaryote clocks [43]).
While some genes play the same roles in insects and
mammals (e.g. period), others do not (timeless), and
still others are found in some but not all species.
Nevertheless, similar to well-known examples in evo-
devo, we can conclude that the structure of the mol-
ecular mechanism underlying clocks is similar in
both groups. The genes involved are highly conserved
at the DNA level, and some genes function in the same
way and position in the clock molecular mechanism.
Qualitative comparisons of figure 3 suggest that the
raw material from the fly clock may have been ‘tin-
kered with’, in an evolutionary sense, to ‘build’ the
mammalian clocks. If we were to ask whether there
is conservation of a specific gene’s function in behav-
iour, we would conclude that this is true for some
genes and not others. For example, one could ask
when and why the function of the timeless gene has
changed over the course of vertebrate evolution. Or
how genomic evolution has allowed for the potential
conservation of the structure of clock molecular mech-
anisms while the body plan and organs in which it acts
Phil. Trans. R. Soc. B (2011)
have changed dramatically. In general, it is valuable to
focus on divergences and convergences found between
species at any level of organization as these cases will
be informative from an evolutionary perspective and
may suggest novel hypotheses.

To summarize this example, circadian rhythms are
found in organisms from bacteria to humans, and
these seem to be controlled by a ‘clock’ mechanism.
Interestingly, while there is broad overlap between
the ‘genes’ involved, they are not always the same.
The evo-devo approach for circadian behaviour
works well, and candidate gene approaches allowed
us to make significant headway in understanding the
genetic basis of circadian behaviour. However, the pre-
cise details of clock function require the study of clock
mechanisms in specific organisms.
(c) Regulation of the foraging gene across species

Even when sequence homology is found, as is required
for the candidate gene approach, the details of gene
function may differ at any or all hierarchical levels.
The candidate gene approach [14] has been success-
fully used for studies of the D. melanogaster foraging
(for) gene, investigated in C. elegans, Apis mellifera
and the ants Pogonomyrmex barbatus and Pheidole
pallidula (see below). The for gene encodes a cGMP-
dependent protein kinase (PKG) in D. melanogaster
and affects a large array of behaviours including
food-related behaviours, responses to stress and learn-
ing and memory [44]. Foraging behaviour in insects
has been a major focus of research on the behavioural
effects of PKG. In nature, larval and adult flies behave
as rovers or sitters [45]. Well-fed rovers exhibit signifi-
cantly more locomotion in the presence of food than

http://rstb.royalsocietypublishing.org/
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sitters. When food is patchy, rovers have a greater
tendency to leave a patch in search of new food
patches compared with sitters [15]. Food deprived
rover larvae behave as sitters and exhibit concomitant
reductions in their PKG enzyme activity resembling
well-fed sitters [46,47]. In addition, well-fed rover
larvae have lower food intake than sitters. Adult
rovers and sitters show flexible responses to food
deprivation as reflected in behavioural, metabolomic
and microarray data [48,49]. As mentioned above,
the for gene also plays a role in food-related behaviours
in C. elegans, D. melanogaster, A. mellifera, P. barbatus
and P. pallidula [50–53]. However, the particular
functions of for and the signalling pathways involved
must differ between species in significant ways. In
D. melanogaster and A. mellifera, high levels of for
result in rover and forager flies and bees, respectively.
In C. elegans and P. pallidula, high levels of for result
in dweller (not roamer) worms, and forager (not
defender) ants, respectively. Furthermore, for’s contri-
bution to the plasticity of behaviour differs between
these species. In D. melanogaster, both chronic food
deprivation and short-term acute deprivation changes
for expression and behaviour [46,47]. In A. mellifera
and P. barbatus, for is involved in long-term plastic
Phil. Trans. R. Soc. B (2011)
changes in behaviour tied to maturation (temporal
polyphenism). In P. pallidula, for is involved in a
worker ant’s rapid switch from defending the nest to
foraging. Finally, only in P. pallidula has a difference
in the spatial localization of FOR protein been
reported. The brains of defender worker ants have
five more cells expressing FOR than do the brains of
the forager worker ants [53]. Together, these differ-
ences suggest that in a very broad sense, for is
involved in the plasticity of food-related behaviours,
but the actual time scale and mechanisms involved in
the various species probably differ. It seems clear,
however, that for modulates many phenotypes. It is
not known whether for affects the same suite of
phenotypes in other species and, if so, whether the
multiple functions of a given gene (i.e. its pleiotropy)
could be useful for between species comparisons.
Further research should shed light on these issues.

The for gene example shows that a given gene or
set of genes can contribute to phenotypic plasticity in
behaviour across a diverse range of species [54]. This
suggests, as in the biological clock example above, that
the gene–gene interactions may also show conserva-
tion. The gene for and genes in the insulin signalling
pathways are involved in both rover/sitter foraging

http://rstb.royalsocietypublishing.org/
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[48] and the transition from nurse to forager in A. mel-
lifera where the behavioural phenotypes and patterns of
gene expression are nutritionally regulated.
(d) Genetic analyses of learning and memory

Another field of research, learning and memory, helps
shed light on the conservation of gene function in
behaviours across divergent species. The many types
of learning and memory will not be discussed here
nor will their relevance for the species’ life histories.
There are many paradigms for testing learning and
memory, both non-associative and associative, that
are informative for interspecific comparisons. One
non-associative paradigm is habituation distinguished
by decreases in a response to a stimulus following
repeated stimulation. Another is sensitization, an
increase in response to a neutral stimulus following
exposure to a stronger stimulus. Habituation and sen-
sitization are observed in species as diverse as C.
elegans [55], D. melanogaster [56], Rattus norvegicus
[57] and humans [58]. Associative learning has also
been observed in many species [59,60].

Associative learning paradigms can be separated
into two categories: (i) operant and (ii) classical (Pav-
lovian) conditioning [60]. In operant conditioning, an
animal acts on its environment to establish associ-
ations between unrelated stimuli. The concept can
easily be demonstrated by imagining an operant con-
ditioning chamber (‘Skinner box’). In one of its most
basic forms, the operant conditioning chamber con-
tains a lever that an animal learns to press in order
to acquire a food reward. Classical conditioning
usually involves the pairing of two stimuli. There is a
reflexive stimulus that elicits a response (e.g. food
reward, electric shock) and a ‘conditioned stimulus’
(e.g. an odour). The animal learns to associate the
conditioned stimulus with the reflexive stimulus result-
ing in a conditioned response. These and other forms
of non-associative and associative learning can be used
to address questions of homology of gene function.
However, some forms will be more tractable than
others. For example, in operant conditioning, there is
less control over the timing, duration and strength of
the stimuli when compared with classical conditioning.
Another consideration is the divergence of the organ-
isms in question. Simpler learning paradigms such as
habituation and sensitization are more suitable for
addressing questions about the conservation of gene
function.

Similarities in the behavioural properties of classical
conditioning are found in a wide array of species from
molluscs to insects, fish, rodents and humans. Many of
the genetic pathways underlying memory formation
are shared in these species [61,62]. For example, the
cAMP-dependent signalling pathway has been impli-
cated in memory formation in Aplysia [63], honey
bees [64], flies [65] and rodents [66] as well as other
species. More specifically, CREB (cAMP responsive
element binding protein) is thought to be necessary
for the formation of protein synthesis-dependent
long-term memory in flies and rodents [67–70]. The
importance of the cAMP signalling pathway for learn-
ing and memory is well established [71]. Some recent
Phil. Trans. R. Soc. B (2011)
investigations in Drosophila and mice show that PKG
(called cGKI in mammals) also functions in learning
and memory. In the mouse, PKG plays a role in fear con-
ditioning in the amygdala [72]. In Drosophila, PKG is
encoded by for with the rover and sitter natural variants
described above. for is the fly homologue of mammalian
cGK1 and is known to affect Pavlovian associative
olfactory aversive learning [73,74], appetitive learning
[46] and operant visual learning [75].

Many of the genes and signalling pathways associ-
ated with memory formation are conserved across a
wide range of species. Drosophila genes involved
in cAMP signalling, ras/MAP kinase signalling,
Staufen RNA binding protein, and genes involved in
human neurocognitive disorders all play a role in
memory formation [61,62]. Furthermore, structural
elements of the neural circuitry underlying associative
learning are postulated to be homologous in insects
and mammals [61]. Imaging analyses have advanced
to the point where a common origin between the anne-
lid mushroom bodies and the vertebrate pallium has
been suggested [76]. Technological advancements in
functional neuroanatomy and real-time imaging
improve along with our understanding of the cellular
mechanisms underlying learning and memory, and
will facilitate further interspecific studies of learning
and memory [71].
(e) Sleep

Sleep is another good model to examine homology of
gene function in behaviour [77–80]. A number of be-
havioural criteria can be used to compare sleep
between species [81]. They were designed to distinguish
sleep from other states of quiescence and include: (i) a
quiescent period, (ii) a reduction in the response to
external stimuli (increased arousal threshold), (iii)
increased rest after prolonged waking, and (iv) reversi-
bility. These criteria led to the discovery of sleep states
in a number of non-mammalian species including
C. elegans [82], Leucophea maderae [83], A. mellifera
[84], D. melanogster [85,86] and Danio rerio [87].

A cAMP–CREB pathway has been implicated
in sleep, providing examples of various components of
hierarchical gene function homology in flies, worms
and mammals [78–80]. In Drosophila, mutants with
increased cAMP levels have reduced sleep, while
mutants with reduced cAMP levels have increased
sleep [88]. Additionally, manipulations of CREB
activity demonstrated its role in wakefulness. Further
studies showed mice lacking either one or two CREB
isoforms exhibited reduced wakefulness [89]. In
worms, the mutants pde-4 (reduced-function cyclic
nucleotide phosphodiesterase) and acy-1 (gain-of-func-
tion adenelyte cyclase) result in increased cAMP levels,
and show increase sensory responsiveness during lethar-
gus [82]. These data suggest that the role of cAMP
signalling in sleep behaviour may be homologous at mul-
tiple levels in very diverse organisms.

Interestingly, the cGMP pathway, involving PKG,
has been implicated in sleep-like behaviour. Raizen
et al. [82] showed that PKG regulates sleep-like beha-
viours in flies and worms ( for and egl-4, respectively).
The authors compared gain- and loss-of-function
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egl-4 mutants and demonstrated that PKG is associated
with the extent of behavioural quiescence as well as its
time-dependence. They then used rover and sitter fly
lines to ask whether the behavioural effect of PKG on
sleep is evolutionarily conserved. They found that
rovers with higher PKG activity slept more than the
sitters. These preliminary data suggest that PKG
activity is positively associated with the amount of
sleep that an animal displays in both species and
appears to be conserved. In mice, a conditional knock-
out of mammalian PKG called cGKI results in
increased sleep fragmentation, exaggerated delta
rebound following deprivation and reduced rapid-eye
movement sleep [90]. The cAMP and cGMP signalling
pathways are important to sleep in diverse animals.
(f) Dopamine and reward

A given gene, or set of genes, may play a role in devel-
opment and/or functioning of the neural circuitry of a
behaviour phenotype. If this neural circuitry shows
some conservation between species, then this circuitry
can be investigated for conservation of behavioural
function. Dopamine signalling regulates a variety of
complex behaviours in a wide range of organisms
[91]. The dopamine system is of interest because it
functions in reward which is intimately linked with
many behaviours such as feeding, mothering, sex,
learning and addictive behaviours. Dopamine neurons
express dopamine pathway genes whose products
are involved in dopamine synthesis and transport in
most organisms. All dopamine neurons share a small
number of genes that code for enzymes and trans-
porters important for the synthesis, packaging and
re-uptake of dopamine. How these genes are regulated
in diverse species is poorly understood. Flames &
Hobert [91] recently found that the function of a
dopamine cis regulatory motif called DA is conserved
(and interchangeable) in C. elegans and M. musculus.
These and other findings will open the door towards
understanding the evolution of structures and neural
circuits in animal brains [92].
(g) Neuropeptides and social behaviour

As discussed, questions about the conservation of be-
havioural phenotypes across distantly related species
are difficult to answer. Donaldson & Young [93] dis-
cuss how vasopressin and its receptors play a role in
the modulation of social and reproductive behaviours,
a broad class of behaviours found in many organisms.
However, the actual effects of this neuropeptide on
components of these behaviours are highly species-
specific. In closely related vole species, species-specific
differences in the social bonding result from differ-
ences in the expression of the arginine vasopressin
V1a receptor (V1aR). Monogamous prairie vole
males have a higher number of V1a receptors than
polygamous meadow vole males [21]. These voles
differ in sequence variation at the 50 region of this
gene. Genetic polymorphisms in this gene have also
been associated with variation in sociobehavioral
traits in humans, including autism spectrum disorders.
However, the evolution of the 50 region of this vaso-
pressin receptor gene did not directly contribute to
Phil. Trans. R. Soc. B (2011)
variation in social behaviour investigated in 13 species
of primates [94]. It is difficult to determine whether
the similarities in the behavioural functions of the vaso-
pressin molecule and its receptors across distantly
related species are due to homology. A category of
behaviour that includes social and reproductive
behaviours may be too broad to be used to address
questions of homology. This suggests that the level of
behavioural analysis (e.g. endophenotypes, behavioural
components) that is chosen for investigations of
homology can affect the conclusions.

When vasopressin is investigated as a class of mol-
ecules, a great deal of conservation of the neural
expression of these genes is found [93]. DNA sequence
homologues of this neuropeptide found in animals from
hydra to vertebrates existed hundreds of millions of
years ago. Examination of tissue-specific expression pat-
terns shows that in mammals, vasopressin is found in the
hypothalamic brain regions and then in the pituitary
where it travels to affect the brain and is also released
into the periphery. Interestingly, genetic homologues
of vasopressin are found in related neurosecretory struc-
tures in the brains of other organisms such as worms and
fish. So at the tissue level, this neuropeptide is found
in functionally related regions and tissue types in
mammals, fish and worms.

One way to ask whether the function of a gene has
been conserved is to perform transgenic experiments
between species. Transgenic experiments, using another
neuropeptide called oxytocin, were performed to ask
whether genes expressed in evolutionarily conserved
neural tissue exhibit similar functions across species.
Indeed transgenic rats carrying a blowfish oxytocin
homologue were able to express oxytocin in neurons of
the rat hypothalamus; this suggested consistency
between the regulatory features of the blowfish and
rat genes [95]. Additionally, the fish gene in transgenic
rats exhibited normal physiological functions. While
the behaviours investigated are highly species-specific,
the levels of DNA sequence, tissue-specific expression,
regulation and physiological function appear to be
conserved in these neuropeptides. This example demon-
strates that different levels of investigation can provide
different insights into questions of gene function
homology across diverse species.
(h) Epigenetics, genomic responses to early

adversity

A relatively new area of research that can potentially
be scrutinized for gene function conservation in
behaviour is epigenetics. For instance, specific environ-
mental factors that alter methylation patterns or histone
modification of conserved genes that affect behaviour
might be homologous across diverse taxa. Meaney,
Szyf and colleagues have characterized an epigenetic
mechanism which results in ‘maternal programming’
that has been shown to affect stress responses in rats
[96–98]. This response is mediated by glucocorticoid
receptors in the hippocampus. Maternal licking and
grooming provided by the mothers during the first
week of life change the levels of RNA expression of
the glucocorticoid receptors. High licking and groom-
ing mothers produce offspring with higher levels of
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glucocorticoid receptor mRNA, while low licking and
grooming mothers produce offspring with lower levels
of this RNA. Individuals that received higher maternal
stimulation showed less behavioural and neuroendocrine
reactivity to stressful stimuli. These changes in gene
activity in response to stress are controlled by patterns
of methylation that define an epigenetic response to
mothering. The glucocorticoid receptor is affected by
patterns of DNA methylation within the promotor region
of the gene. In the case of low licking and grooming
mothers, the offspring’s promoter of the glucocorticoid
receptor is methylated resulting in a decrease in the
expression of this gene. This does not occur in offspring
of high licking and grooming mothers. The patterns of
methylation are maintained into later stages of life.
There is some evidence that the stress response-related
effects of maternal licking and grooming are passed on
to female offspring. The female offspring mother their
offspring according to how they themselves were reared
(with high or low licking and grooming). The trans-
mission of this maternal behaviour across generations
is related to methylation of the oestrogen receptor gene
passed from mother to daughter [98]. In a related
human study, McGowan et al. [99] showed that methyl-
ation patterns and RNA expression levels of the
glucocorticoid receptor in the hippocampus of the
brains of suicide victims were altered when the victims
had a history of abuse. This suggested that analogous
to low licking and grooming in mice, early adversity in
humans causes a downregulation of the glucocorticoid
receptor gene. Thus, this gene-by-early environment
adversity interaction is found in rats and humans.
5. SUMMARY
Early on, the field of behaviour genetics focused on
organisms that could be genetically manipulated.
However, this limited the breadth of species and beha-
viours that could be studied using a genetic approach.
Advances in DNA sequencing and the ’omics sciences
as well as the use of candidate genes has allowed for a
broader focus that includes new model species studied
from ecological and neurobiological perspectives.
Indeed, it has been argued that an understanding of
how genes evolve to affect phenotypes should include
a comparative approach, and should consider many
species and collaborations between evolutionary and
molecular biologists [100,101]. While relatively little
is known about how evolutionary processes shape
intra- and interspecific variation in behavioural pheno-
types and the genes that underlie them [7,8], one
intriguing theme is that genes which show homology
at the level of DNA sequence appear to influence
similar categories of behaviours across taxa.

What can functional genomics, systems biology and
the plethora of data provided [102] tell us about conser-
vation of a gene’s function in behaviour? As the
sophistication of genome databases rapidly improve,
we will learn more about molecular pathways involved
in specific brain functions and how these pathways
translate to species-specific differences in behaviour.
By making comparisons across genomes, we can
better understand how sequence variation, genetic
architecture and expression patterns associate with
Phil. Trans. R. Soc. B (2011)
conserved phenotypes. Evo-devo has already used
genome-wide linkage mapping and transcriptional pro-
filing for interspecific comparisons. Such genome-wide
comparisons can be measured dynamically and in paral-
lel between multiple species of interest. Combined with
information on nervous system function, neural circui-
try and plasticity, we will be able to compare and
contrast molecular pathways and their neural substrates
for well-defined behavioural phenotypes across species
in different environments. This system-level approach
will provide data to address issues of conservation of
the molecular and neural pathways that underlie specific
behavioural variation. Rapid developments should soon
make it possible to link levels of organization on a
genome and nervous system-wide scale, making it poss-
ible to address issues of conservation across all levels of
organization in more quantitative ways.
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