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ORIGINAL RESEARCH ARTICLE

A cGMP-dependent protein kinase, encoded by the Drosophila foraging gene,
regulates neurotransmission through changes in synaptic structure and function

Jeffrey S. Dasona,b and Marla B. Sokolowskia,c,d

aDepartment of Cell & Systems Biology, University of Toronto, Toronto, Canada; bDepartment of Biomedical Sciences, University of Windsor,
Windsor, Canada; cDepartment of Ecology & Evolutionary Biology, University of Toronto, Toronto, Canada; dChild and Brain Development
Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada

ABSTRACT
A cGMP-dependent protein kinase (PKG) encoded by the Drosophila foraging (for) gene regulates both
synaptic structure (nerve terminal growth) and function (neurotransmission) through independent
mechanisms at the Drosophila larval neuromuscular junction (nmj). Glial for is known to restrict nerve
terminal growth, whereas presynaptic for inhibits synaptic vesicle (SV) exocytosis during low frequency
stimulation. Presynaptic for also facilitates SV endocytosis during high frequency stimulation. for’s
effects on neurotransmission can occur independent of any changes in nerve terminal growth.
However, it remains unclear if for’s effects on neurotransmission affect nerve terminal growth.
Furthermore, it’s possible that for’s effects on synaptic structure contribute to changes in neurotrans-
mission. In the present study, we examined these questions using RNA interference to selectively
knockdown for in presynaptic neurons or glia at the Drosophila larval nmj. Consistent with our previous
findings, presynaptic knockdown of for impaired SV endocytosis, whereas knockdown of glial for had
no effect on SV endocytosis. Surprisingly, we found that knockdown of either presynaptic or glial for
increased neurotransmitter release in response to low frequency stimulation. Knockdown of presynaptic
for did not affect nerve terminal growth, demonstrating that for’s effects on neurotransmission does
not alter nerve terminal growth. In contrast, knockdown of glial for enhanced nerve terminal growth.
This enhanced nerve terminal growth was likely the cause of the enhanced neurotransmitter release
seen following knockdown of glial for. Overall, we show that for can affect neurotransmitter release by
regulating both synaptic structure and function.
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Introduction

Synaptic strength is influenced by changes in both synaptic
structure (nerve terminal growth) and function (neurotrans-
mission). The Drosophila larval neuromuscular junction
(nmj) is a well-established model system for studying synap-
tic structure and function (reviewed in Harris & Littleton,
2015). Effects on these processes have been shown to be
interrelated in some cases (Budnik, Zhong, & Wu, 1990;
Davis & Goodman, 1998; Sigrist, Thiel, Reiff, & Schuster,
2002; Stewart, Schuster, Goodman, & Atwood, 1996; Zhong,
Budnik, & Wu, 1992; Zhong & Wu, 2004), but not others
(Dason et al., 2009; Romero-Pozuelo, Dason, Atwood, &
Ferr�us, 2007; Romero-Pozuelo et al., 2014). While most
studies using this model have focused on presynaptic and
postsynaptic regulation of synaptic structure and function,
the importance of glia in these processes is becoming
increasingly apparent (Brink, Gilbert, Xie, Petley-Ragan, &
Auld, 2012; Dason, Allen, Vasquez, & Sokolowski, 2019;
Fuentes-Medel et al., 2009; Keller et al., 2011; Kerr
et al., 2014).

The Drosophila foraging (for) gene encodes a cGMP-
dependent protein kinase (PKG) (Osborne et al., 1997) that

affects numerous behaviours (see Anreiter & Sokolowski,
2019 for a detailed review). for’s influence on these behav-
iours likely arise from for’s effects at synapses. We recently
found that for is expressed in both presynaptic neurons and
glia at the Drosophila larval nmj and affects both synaptic
structure and function (Dason et al., 2019). Specifically, we
found that for0 null mutants have increased nerve terminal
growth (Dason et al., 2019). Tissue specific rescues demon-
strated that this increased nerve terminal growth was due to
the absence of for in glia (Dason et al., 2019). Furthermore,
for0 null mutants have increased neurotransmission in
response to low frequency stimulation due to increased pre-
synaptic Ca2þ entry and decreased neurotransmission in
response to high frequency stimulation due to reduced syn-
aptic vesicle (SV) recycling (Dason et al., 2019). Tissue spe-
cific rescues showed that both effects were due to
presynaptic for (Dason et al., 2019).

Fluorescein-assisted light inactivation of for revealed that
for’s effects on neurotransmission can occur independent of
its effects on nerve terminal growth (Dason et al., 2019).
However, it remains possible that for’s effects on nerve ter-
minal growth can also affect neurotransmission and for’s
effects on neurotransmission may contribute to changes in
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nerve terminal growth. To address these possibilities, we
used RNA interference (RNAi) to selectively knock down all
for transcripts in neurons or glia at the Drosophila larval
nmj and examined whether for’s effects on synaptic structure
and function were interrelated.

Material and methods

Fly stocks

Fly stocks were grown on molasses based fly medium in
uncrowded conditions at 25 �C (Anreiter, Vasquez, Allen, &
Sokolowski, 2016). Mid third instar larvae were used for all
experiments. All transgenic lines were backcrossed into a
wild-type sitter background (Allen, Anreiter, Neville, &
Sokolowski, 2017). The GAL4/UAS system was used for
neuron or glial specific expression of transgenes (Brand &
Perrimon, 1993). A UAS-forRNAi line targeting all for tran-
scripts and UAS-Dcr were used to knock down for in
selected tissues (Dason et al., 2020). n-syb-GAL4 (Verstreken
et al., 2009) was used to drive expression of UAS-forRNAi,
UAS-Dcr in neurons and Repo-GAL4 (Sepp, Schulte, & Auld,
2001) was used to drive expression of UAS-forRNAi, UAS-
Dcr in glia.

Immunohistochemistry

Immunohistochemistry was performed as previously
described (Cantarutti, Burgess, Brill, & Dason, 2018). Larvae
were dissected, fixed and then incubated overnight at 4 �C
with primary antibodies diluted in blocking solution. FITC-
conjugated anti-horseradish peroxidase (HRP) antibody
(1:800 dilution; Jackson ImmunoResearch) was used to visu-
alize neurons and the mouse monoclonal bruchpilot (brp)
antibody (1:100 dilution; Iowa Hybridoma Bank; Wagh
et al., 2006) was used to visualize active zones. Larval fillet
preparations were mounted in Permafluor (Immunon,
Pittsburgh, PA) on a glass slide with a cover slip.
Preparations were viewed under a TCS SP5 confocal laser-
scanning microscope (Leica, Heidelberg, Germany) with a
63� oil-immersion objective (1.4NA).

Electrophysiology

Intracellular recordings were performed in HL6 saline
(Macleod, Hegstrom-Wojtowicz, Charlton, & Atwood, 2002)
supplemented with 0.5mM CaCl2 as previously described
(Dason, Smith, Marin, & Charlton, 2014). Sharp glass elec-
trode filled with 3M KCl (�40MX) were used to measure
spontaneously occurring miniature excitatory junction
potentials (mEJPs) and stimulus-evoked excitatory junction
potentials (EJPs) from the ventral longitudinal muscle fiber
6 (abdominal segment 3) of dissected larvae. A suction elec-
trode was used to stimulate cut segmental nerves at 0.05Hz.
Electrical signals were recorded using the MacLab/4S data
acquisition system (ADInstruments).

FM1-43 imaging

FM1-43 experiments were performed as previously described
(Dason, Smith, Marin, & Charlton, 2010). The following
high Kþ saline: 25mM NaCl, 90mM KCl, 10mM NaHCO3,
5mM HEPES, 30mM sucrose, 5mM trehalose, 10mM
MgCl2, 2mM CaCl2, pH 7.2 (Verstreken, Ohyama, & Bellen,
2008) was to induce high Kþ depolarization for FM1-43
loading and unloading. Presynaptic boutons were loaded
with FM1-43 (Invitrogen) by high Kþ depolarization for
2min and subsequently washed for 5min in Ca2þ free HL6.
75 mM Advasep-7 was included for the first 1min of the
wash to reduce background fluorescence from extracellular
FM1-43 (Kay et al., 1999). A Leica TCS SP5 confocal laser-
scanning microscope with a 63X water dipping objective
(0.9NA) was used to take an image of FM1-43 uptake and
then high Kþ depolarization for 2min was used to induce
exocytosis. A second image was then taken to document
FM1-43 unloading. The released fraction was calculated
using the following formula: (fluorescence of load – fluores-
cence of unload)/fluorescence of load.

Statistical analysis

SigmaPlot (version 11.0; Systat Software) was used for statis-
tical analysis. One-way ANOVA tests (with a Holm–Sidak
post hoc test) were used for comparing datasets. Error bars
in all figures represent ± standard error of the mean (sem).

Results

Glial for negatively regulates nerve terminal growth and
evoked neurotransmission

We previously found that for expression in glia rescued the
increased nerve terminal growth seen in the for0 null mutant
(Dason et al., 2019). We hypothesized that knockdown of
glial for would phenocopy the increased nerve terminal
growth seen in the for0 null mutant. We used RNAi to
knockdown for in glia at the Drosophila larval nmj and then
stained nmjs with HRP (a neuronal membrane marker) and
brp (an active zone marker). We counted the number of
synaptic boutons on segment 3 of muscle fibers 6 and 7 in
experimental and control genotypes. Two types of axons
innervate these muscle fibers and result in 1 b and 1 s bou-
tons, which differ in their morphological and physiological
properties (Atwood, Govind, & Wu, 1993; Kurdyak et al.,
1994). As predicted, we found that glial knockdown of for
increased the number of 1 b and 1 s boutons compared to
controls (Figure 1(A,B)). The number of active zones per
bouton was not significantly different between genotypes
(Figure 1(C,D)). We next examined the role of glial for in
neurotransmitter release by recording the compound EJP
generated by tonic-like type 1 b and phasic-like type 1 s bou-
tons from segment 3 of muscle fiber 6 in third-instar larvae
in response to low frequency stimulation (0.05Hz).
Surprisingly, we found glial knockdown of for significantly
increased the amplitude of EJPs compared to controls
(Figure 1(E,F)). There were no significant differences in the
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amplitude (Figure 1(E,G)) or frequency (Figure 1(E,H)) of
mEJPs between genotypes. Thus, glial for negatively regulates
both nerve terminal growth and evoked neurotransmission.

Presynaptic for negatively regulates neurotransmission

Presynaptic for negatively regulates evoked neurotransmis-
sion in response to low frequency stimulation (Dason et al.,
2019). To determine if this increased neurotransmission
alters nerve terminal growth, we used RNAi to knock down
for in presynaptic neurons at the Drosophila larval nmj and
assessed whether presynaptic for regulated nerve terminal
growth. Presynaptic knockdown of for had no effect on the
number of 1 b and 1 s boutons or the number of active
zones per bouton compared to controls (Figure 2(A–D)).
We next examined the role of presynaptic for in neurotrans-
mitter release by recording EJPs in response to low fre-
quency stimulation (0.05Hz). As expected, we found that
presynaptic knockdown of for significantly increased the
amplitude of EJPs compared to controls (Figure 2(E,F)).
There were no significant differences in the amplitude
(Figure 2(E,G)) or frequency (Figure 2(E,H)) of spontan-
eously occurring mEJPs between genotypes. Thus, presynap-
tic for negatively regulates evoked neurotransmission and

this increased neurotransmission does not affect nerve ter-
minal growth.

Presynaptic for is required for SV endocytosis

We previously found that expression of presynaptic for, but
not glial for, could rescue the impaired SV endocytosis seen
in the for0 null mutant (Dason et al., 2019). To determine if
reduced levels of presynaptic or glial for phenocopies the SV
endocytosis impairment of the for0 null, we used the lipo-
philic dye FM1-43 (Betz & Bewick, 1992) to monitor SV
cycling. We assessed SV cycling in control and experimental
genotypes by measuring FM1-43 uptake by stimulating prep-
arations with high Kþ saline for 2min in the presence of
FM1-43 (Figure 3(A)). FM1-43 uptake was significantly
reduced when presynaptic for was knocked down in com-
parison to controls (Figure 3(A,B)). No effect was observed
when glial for was knocked down (Figure 3(B)). We next
measured FM1-43 unloading by applying high Kþ saline for
2min to determine if the impairment seen when presynaptic
for was knocked down was due to a defect in SV exocytosis.
We found that a similar fraction was released by all geno-
types (Figure 3(A,C)) demonstrating that an impairment in
SV exocytosis was not the cause of the reduced FM1-43

Figure 1. Glial for negatively regulates neurotransmitter release and nerve terminal growth. A, Fixed larval nmjs stained with FITC-conjugated anti-HRP antibody. B,
Glial specific knockdown of for (þ;þ;UAS-for RNAi, UAS-dcr/Repo-GAL4) significantly increased the number of 1 b (F(2,26)¼ 7.162, p< .05; n¼ 7–12) and 1 s boutons
(F(2,26)¼ 5.166, p< .05; n¼ 7–12) in comparison to controls (þ;þ;UAS-for RNAi, UAS-dcr/þ and þ;þ;Repo-GAL4/þ). C, Representative images of 1 b and 1 s boutons
stained with FITC-conjugated anti-HRP antibody and anti-BRP. D, The number of active zones per 1 b (F(2,34)¼ 0.725, p> .05; n¼ 10–14) or 1 s bouton
(F(2,35)¼ 0.159, p> .05; n¼ 11–14) was not significantly different between experimental and control genotypes. E, Representative traces of EJPs and mEJPs.
Preparations were maintained in HL6 (0.5mM Ca2þ) saline. F, The amplitude of evoked EJPs were significantly enhanced when glial for was knocked down in com-
parison to control genotypes (F(2,28)¼ 9.427, p< .05; n¼ 8–13). G,H, There were no significant differences in mEJP amplitude (F(2,24)¼ 0.821, p> .05; n¼ 7–11) or
frequency (F(2,24)¼ 0.713, p> .05; n¼ 7–11) between genotypes. Error bars represent ± sem.
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uptake seen in larvae with presynaptic for knocked down.
Thus, presynaptic for is required for SV endocytosis.

Discussion

Our study characterized the effects of presynaptic or glial
knockdown of for on synaptic structure and function. In
agreement with our previous findings using a for0 null
mutant, we found presynaptic for negatively regulates neuro-
transmitter release in response to low frequency stimulation
and is required for SV endocytosis, whereas glial for func-
tions to restrain nerve terminal growth. Expanding on our
previous work, we found that the enhanced neurotransmis-
sion resulting from presynaptic knockdown of for did not
alter nerve terminal growth. Furthermore, we found that
glial for can affect neurotransmission through its effects on
nerve terminal growth.

for and axonal growth

Data from our study (Figure 1) and several others demon-
strates that for functions to restrain axonal growth (Dason
et al., 2019; Peng et al., 2016; Renger, Yao, Sokolowski, &
Wu, 1999; Song et al., 2019). Higher levels of for in allelic

for variants have fewer ectopic nerve entry points in muscles
at the Drosophila larval nmj (Renger et al., 1999). Drosophila
for0 null mutant larvae have increased nerve terminal growth
and this increased nerve terminal growth is rescued by
expression of for in glia (Dason et al., 2019). Consistent with
these findings, we show that selectively knocking down for
in glia enhanced nerve terminal growth (Figure 1(A,B)). for’s
effects on nerve terminal growth are not a consequence of
increased neurotransmission, as presynaptic knockdown of
for increases neurotransmission without affecting nerve ter-
minal growth (Figure 2). Genetic experiments in Drosophila
suggest that for regulates nerve terminal growth by modulat-
ing TGF-b/BMP retrograde signaling (Dason et al., 2019).
Specifically, for may affect the secretion of the glial TGF-b
ligand, Mav, which regulates nerve terminal growth through
muscle derived Glass bottom boat (Gbb), the Drosophila
TGF-b/BMP homologue (Fuentes-Medel et al., 2012).
Consistent with these Drosophila studies, a role for glial
PKG in synaptogenesis was demonstrated in Xenopus laevis
tadpole (Sild, Van Horn, Schohl, Jia, & Ruthazer, 2016). for
is also required for restraining axonal growth in Drosophila
embryos. for20-29 null mutants display axonal overgrowth,
incorrect axon pathfinding and incorrect target recognition
(Peng et al., 2016). for physically interacts with the tran-
scription factor longitudinal lacking (lola) (Peng et al., 2016),

Figure 2. Presynaptic for negatively regulates neurotransmitter release but has no effect on nerve terminal growth. A, Fixed larval nmjs stained with FITC-conju-
gated anti-HRP antibody. B, Neuronal specific knockdown of for (þ;þ;UAS-for RNAi, UAS-dcr/n-syb-GAL4) had no effect on the number of 1 b (F(2,21)¼ 0.166,
p> .05; n¼ 7–9) and 1 s boutons (F(2,21)¼ 0.488, p> .05; n¼ 7–9) in comparison to controls (þ;þ;UAS-for RNAi, UAS-dcr/þ and þ;þ;n-syb-GAL4/þ). C,
Representative images of 1 b and 1 s boutons stained with FITC-conjugated anti-HRP antibody and anti-BRP. D, The number of active zones per 1 b (F(2,30)¼ 0.313,
p> .05; n¼ 10–13) or 1 s bouton (F(2,27)¼ 0.954, p> .05; n¼ 9–12) was not significantly different between experimental and control genotypes. E, Representative
traces of EJPs and mEJPs. Preparations were maintained in HL6 (0.5mM Ca2þ) saline. F, The amplitude of evoked EJPs were significantly enhanced when presynaptic
for was knocked down in comparison to control genotypes (F(2,25)¼ 7.117, p< .05; n¼ 7–11). G,H, There were no significant differences in mEJP amplitude
(F(2,22)¼ 3.015, p> .05; n¼ 6–11) or frequency (F(2,22)¼ 0.577, p> .05; n¼ 6–11) between genotypes. Error bars represent ± sem.
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which is required for repelling longitudinal axons away from
the midline (Crowner, Madden, Goeke, & Giniger, 2002). for
regulates axon guidance by antagonizing the effects of Lola
in Drosophila embryos (Peng et al., 2016).

Drosophila for was also recently shown to restrict axon
regeneration. Specifically, Drosophila for inhibits axon regener-
ation of larval sensory neurons (Song et al., 2019). During axon
regeneration, a mechanosensitive ion channel called Piezo is
activated and induces local Ca2þ transients at the growth cone,
leading to activation of nitric oxide synthase and for, which
restrict axon regrowth (Song et al., 2019). Overexpression of for
impedes axon regeneration demonstrating that for functions as
a brake for axon regeneration (Song et al., 2019). These findings
are consistent with the reported roles of for negatively regulat-
ing axonal growth (Dason et al., 2019; Peng et al., 2016; this
study). Collectively, these studies suggest that for negatively reg-
ulates axonal growth and that for could be a potential target for
increasing axon regeneration and modulating nervous sys-
tem repair.

Presynaptic for and neurotransmission

We found that knockdown of for in presynaptic neurons
increased evoked neurotransmission in response to low fre-
quency stimulation (Figure 2(E,F)). These findings are in
agreement with our previous work that demonstrated that
for0 null mutants have increased evoked neurotransmission
and presynaptic Ca2þ entry in response to low frequency
stimulation and that these effects could be rescued by
expressing for in presynaptic neurons (Dason et al., 2019).
Consistent with a role of for in negatively regulating evoked
neurotransmission, an earlier study found that overexpres-
sion of for reduced evoked neurotransmission (Renger et al.,
1999). Cultured Drosophila neurons of allelic variants of for
with reduced PKG activity were previously shown to have
decreased voltage-dependent Kþ currents (Renger et al.,
1999). A similar reduction of Kþ currents in for0 null
mutants or larvae with for knock downed in presynaptic
neurons could increase action potential duration, leading to
increased presynaptic Ca2þ entry and increased evoked
neurotransmission.

Knockdown of for in presynaptic neurons did not affect
spontaneous neurotransmission (Figure 2(E,G,H)). Similarly, we
previously found that spontaneous neurotransmission was not
altered in for0 null mutants (Dason et al., 2019). Our data sug-
gests that for has a selective effect on evoked neurotransmission.
These findings are consistent with growing evidence that evoked
and spontaneous neurotransmission have distinct molecular
mechanisms (Kavalali, 2015; Melom, Akbergenova, Gavornik, &
Littleton, 2013; Pang et al., 2011; Ramirez, Khvotchev,
Trauterman, & Kavalali, 2012).

We previously used fluorescein-assisted light inactivation
to acutely inactivate for and found that for’s effects on
neurotransmission can occur independent of any changes in
nerve terminal growth (Dason et al., 2019). In agreement
with this, knockdown of presynaptic for had no effect on
nerve terminal growth (Figure 1(A,B)), but did increase

Figure 3. Presynaptic for regulates SV endocytosis. A, Representative images of pre-
synaptic boutons loaded with FM1–43 during high Kþ stimulation for 2min. High
Kþ saline was then reapplied for 2min and fluorescence was measured again
(unload). B, Neuronal specific knockdown of for (þ;þ;UAS-for RNAi, UAS-dcr/n-syb-
GAL4) significantly reduced the amount of FM1-43 uptake compared to controls
(þ;þ;UAS-for RNAi, UAS-dcr/þ and þ;þ;n-syb-GAL4/þ) (F(2,17)¼ 10.170, p< .05;
n¼ 4–10), demonstrating impaired SV recycling. Glial specific knockdown (þ;þ;UAS-
for RNAi, UAS-dcr/Repo-GAL4) had no effect in comparison to controls (þ;þ;UAS-for
RNAi, UAS-dcr/þ and þ;þ;Repo-GAL4/þ) (F(2,15)¼ 0.0197, p> .05; n¼ 4–8). C, A
similar fraction of FM1-43 was released in controls and RNAi lines, demonstrating
that recycled SVs could undergo exocytosis (presynaptic knockdown:
(F(2,17)¼ 3.301, p> .05; n¼ 4–10 and glial knockdown: (F(2,15)¼ 1.702, p> .05;
n¼ 4–8). Fluorescence (F) was reported with background F subtracted. Scale bars
represent 4mm. Error bars represent± sem.
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evoked neurotransmission (Figure 1(E,F)). Thus, presynaptic
for directly regulates evoked neurotransmission.

Presynaptic for and SV endocytosis

We found that knockdown of presynaptic for impaired SV
endocytosis (Figure 3). We previously used fluorescein-
assisted light inactivation of FOR and a temperature-sensi-
tive dynamin mutant, shibirets1, to demonstrate that FOR is
necessary for endocytosis of SVs that have undergone exo-
cytosis using a functional FOR protein (Dason et al., 2019).
These data show that FOR’s effects on SV endocytosis are
not simply a consequence of altered SV exocytosis. These
findings are consistent with several studies that propose that
PKG plays a key role in balancing SV exocytosis and endo-
cytosis (Collado-Alsina, Ram�ırez-Franco, S�anchez-Prieto, &
Torres, 2014; Dason et al., 2019; Eguchi, Nakanishi, Takagi,
Taoufiq, & Takahashi, 2012; Petrov, Giniatullin, Sitdikova, &
Zefirov, 2008; Taoufiq, Eguchi, & Takahashi, 2013). During
periods of sustained synaptic transmission, SV recycling is
upregulated through a retrograde pathway that involves the
release of nitric oxide (NO) from the postsynaptic cell and a
subsequent increase in presynaptic cGMP and PIP2 in cul-
tured hippocampal neurons and synapses of the rat Calyx of
Held (Eguchi et al., 2012; Micheva, Buchanan, Holz, &
Smith, 2003). Similarly, application of NO donors at the
Drosophila nmj induces cGMP immunoreactivity in pre-
synaptic boutons (Wildemann & Bicker, 1999) and both pre-
synaptic cGMP (Shakiryanova & Levitan, 2008) and PIP2
levels (Dason et al., 2014) were found to be elevated during
high frequency stimulation. PKG is activated by cGMP and
thought to upregulate PIP2 levels through a Rho-kinase
(Eguchi et al., 2012; Taoufiq et al., 2013). PIP2 recruits AP-2
and clathrin to sites of endocytosis (Micheva et al., 2003).
Thus, a reduction in PIP2 is likely the cause of the impaired
SV endocytosis observed following the inhibition of PKG in
mammalian studies or the absence of for in
Drosophila studies.

Glial for’s effects on synaptic structure and function

Growing evidence demonstrates a role for glia in regulating
both synaptic structure and function. Specifically, glia are
important mediators of processes such as neurotransmission
(Panatier et al., 2011), synapse formation (Mauch et al.,
2001) and synaptic plasticity (Henneberger, Papouin, Oliet,
& Rusakov, 2010). We previously found that expressing for
in glia in a for0 null mutant background rescued the
enhanced nerve terminal growth seen in the for0 null mutant
but did not rescue the enhanced neurotransmission seen in
the for0 null mutant (Dason et al., 2019). This clearly dem-
onstrates that glial for is not having a direct effect on neuro-
transmission. In the present study, we found that knocking
down glial for enhanced both nerve terminal growth and
neurotransmission (Figure 1). This strongly suggests that
while presynaptic for has direct effects on neurotransmis-
sion, glial for regulates neurotransmission through its effects
on nerve terminal growth.

The for gene and behaviours

The for gene is required for survival (Anreiter et al., 2021)
and known to affect many behaviours, such as foraging
(Allen et al., 2017; Anreiter, Kramer, & Sokolowski, 2017;
Anreiter & Sokolowski, 2018), learning and memory (Kaun,
Hendel, Gerber, & Sokolowski, 2007; Mery, Belay, So,
Sokolowski, & Kawecki, 2007), stress responses (Caplan,
Milton, & Dawson-Scully, 2013; Dawson-Scully, Armstrong,
Kent, Robertson, & Sokolowski, 2007; Krill & Dawson-
Scully, 2016), sleep (Donlea et al., 2012) and nociception
(Dason et al., 2020). Neuronal and glial for likely contribute
in regulating many of these responses and behaviours. for is
expressed in both neurons and glia in the larval CNS (Allen,
Anreiter, Vesterberg, Douglas, & Sokolowski, 2018; Dason
et al., 2020). Interestingly, for appears to be expressed pri-
marily in glia in the adult CNS (Allen & Sokolowski, 2021).
However, some expression of for in neurons in the adult
CNS has also been reported (Eddison, Belay, Sokolowski, &
Heberlein, 2012). In recent years, the importance of glia in
flies and mammals have been shown in behaviours such as
learning and memory (Adamsky et al., 2018; Frankland &
Josselyn, 2020; Kol et al., 2020), sleep (Artiushin & Sehgal,
2020) and pain (Salter & Beggs, 2014). Future behavioural
studies on FOR/PKG should examine the potential contribu-
tions of both neuronal and glial FOR/PKG. Our data dem-
onstrates that for has pleiotropic effects at synapses, with
presynaptic for directly regulating synaptic function, while
glial for regulates synaptic function through effects on nerve
terminal growth at the larval nmj.
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